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Abstract

The current study focuses on three main topics; the pseudo-quasi conformal curvature tensor,
quasi-Sasakian manifolds (QSAS-manifold), and generalized Sasakian space forms (GS-space
forms) employing the G-adjoined structure space. For a QSAS-manifold of GS-space forms,
the components of the Ricci tensor and pseudo-quasi conformal curvature tensor are computed.
Various types ofQSAS-manifold are described, and their interactions with GS-space forms are
investigated. It has been shown that ξ-pseudo quasi conformally flat QSAS-manifold of GS-
space forms includes quasi Einstein manifold. Furthermore, the condition of a quasi-pseudo
quasi conformal QSAS-manifold of space forms to be a quasi-Einstein manifold is identified.
Finally, the scalar curvature is determined for ξ-pseudo quasi-conformally flatQSAS-manifold
and quasi-pseudo quasi conformalQSAS-manifold.
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1 Introduction

Normal manifolds are an important class of contact metric manifolds. However, the curva-
ture character of suchmanifolds is unfamiliar in general, with the exception of Sasakian or cosym-
plectic manifolds. If the almost contact structure is normal and the fundamental 2-form is closed,
the manifoldM is referred to as quasi-Sasakian manifold.

Blair [6] proposed the concept of a quasi-Sasakian (QSAS) manifold as an integrated struc-
ture that includes both cosymplectic and Sasakian structures. Blair’s demonstration of important
geometric properties and the first instances of QSAS-manifolds make this generalization a valu-
able source for differential geometric research. Many authors have made significant contributions
to our understanding of QSAS-manifolds. Kanemaki [11] established the necessary and suffi-
cient condition for an almost contact metric manifold to be quasi-Sasakian. In a subsequent study,
Kanemaki [12] determined the necessary and sufficient conditions for a quasi-Sasakian structure
to be Sasakian and cosymplectic. Tanno [23] investigated the quasi-Sasakian manifold of odd
rank. Olszak [18] identified the necessary and sufficient condition for a quasi-Sasakian manifold
to be conformally flat, whereas Kirichenko and Rustanov [15] characterized the QSAS-Einstein
manifold and showed the symmetry properties of its Riemannian curvature tensor, identifying
new subclasses of QSAS-manifold.

The study of submanifolds withinQSAS-manifolds has also received significant attention. De
et al. [10] demonstrated that if the typical submanifolds of QSAS-manifolds are T (M)-invariant
in the context of a non-zero tensor field F , then the corresponding distribution D is not inte-
grable. Mondal and De [17] demonstrated locally ϕ-Ricci symmetric and ϕ-Ricci symmetric of
three-dimensional QSAS-manifolds with constant structure functions, as well as cyclic parallel
and η-parallel Ricci tensor. Perktaş and Yildis [19] investigated η-Ricci solitons, gradient Ricci
solitons, Ricci solitons and Yamabe solitons in three-dimensional QSAS-manifold employing the
Schouten-van-Kampen connection, presenting various examples of these manifolds. Rahman
[20] investigated warped product submanifolds ofQSAS-manifold, specifically concentrating on
warped product CR-submanifolds.

On the related side, the geometric properties and applications of GS-space forms have been
thoroughly examined. Carriazo [7] provided examples of GS-space forms employing the confor-
mal changes of metric and warped product. Alegre and Carriazo [4] demonstrated that constant
functions required for α-Sasakian of GS-space forms of dimensions five or higher. On the other
hand, Venkatesha and Shanmukha [24] examined W2-locally symmetric, W2-pseudo-symmetric,
W2-ϕ-recurrent, andW2-locally ϕ-symmetric GS-space forms. Venkatesha et al. [25] showed that
locally ϕ-recurrent GS-space forms are manifolds of constant curvature. Vidyavathi et al. [26]
investigated the semi-symmetric characteristics of GS-space forms. On the other hand, Dong [16]
considered the real hypersurface in complex space form, which implies that this manifold has an
almost contact metric structure.

Many earlier studies have concentrated on some of the curvature tensors, including the Rie-
mannian curvature tensor, which is regarded as a key component of the pseudo-quasi conformal
curvature tensor under consideration in this study. Abood and Al-Hussaini [2] demonstrated the
geometric properties of conharmonic curvature tensor of locally conformal almost cosymplectic
manifold. Abu-Saleem and Rustanov [3] examined several curvature identities provided by the
Riemannian curvature tensor. Al-Hussaini et al. [5] investigated the vanishing conharmonic cur-
vature tensor of normal locally conformal almost cosymplectic manifold.

Although substantial progress has been created, there are still some fundamental questions,
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particularly about the relation between QSAS-manifolds and GS-space forms, as well as their
general geometric relevance. Studying these manifolds not only improves our comprehension
of differential geometry, but also helps us understand more general mathematical and physical
theories like curvature, symmetry, and Ricci solitons. This article seeks to fill gaps in the literature
by addressing pressing concerns and providing new information on the structure and properties
of GS-space forms and QSAS-manifolds.

2 Preliminaries

In this section, numerous ideas and information about the topic of this article are discussed.
The structure equations and components of the Riemannian curvature tensor forQSAS-manifolds
are derived.
Definition 2.1. [6] An almost contact metric manifold (ACOM-manifold) is a smooth manifold M
equipped with a quadruple (η, ξ, φ,G) where,

• η is a contact form,

• ξ is a characteristic vector,

• Φ is endomorphisim tensor of type (1; 1),

• G = ⟨., .⟩ is a Riemannian metric.

Moreover, the following conditions are satisfied,

1. η(ξ) = 1,

2. Φ(ξ) = 0,

3. η ◦ Φ = 0,

4. Φ2 = −id+ η ⊗ ξ,

5. G(ΦW,ΦP ) = G(W,P )− η(W )η(P ), W, P ∈ X(M).

In this paper, we employ the AGS-space to more precisely characterize structural equations.
Kirichenko [13] provide additional information and specifics on the building of the adjoined G-
structure (AGS-space).
Lemma 2.1. [13] In the AGS-space, the matrices representing the tensors G and Φ are defined as follows:

Gij =

1 0 0
0 0 −In
0 In 0

 , Φi
j =

0 0 0
0

√
−1In 0

0 0 −
√
−1In

 ,

where In is the identity matrix.

Definition 2.2. [6]A quasi-Sasakian Structure (QSAS-structure) is anACOM-structure characterized
by a closed fundamental form Ω(W,P ) = G(W,ΦP ) and the condition 2 dη ⊗ ξ +NΦ = 0, where NΦ is
a (2, 1)-tensor known as the Nijenhuis tensor of Φ [21]. A manifold M equipped with a QSAS-structure
is called a QSAS-manifold.
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Lemma 2.2. [15] By adopting the AGS-space, the complete structure equations of the QSAS-structure
are provided below,

1. dωa = ωa
b ∧ ωb +Ba

bω ∧ ωb,

2. dωa = −ωb
a ∧ ωb −Bb

aω ∧ ωb,

3. dω = 2Ba
bω

b ∧ ωa,

4. dωa
b − ωa

c ∧ ωc
b = (Aad

bc − 2Ba
bB

d
c )ω

c ∧ ωd +Ba
bcω ∧ ωc +Bac

b ω ∧ ωc,

5. dBa
b +Be

bω
e
a −Ba

eω
e
b = Bbc

a ωc +Bac
b ωc,

where

1. B[bc]
a = Ba

[bc] = 0, Ba
bc = −Bbc

a ,

2. Aad
bc = Abc

ad;A
ad
[bc] = A

[ad]
bc = 0.

The notations [ ] and Aad
bc above refer to the alternative indices and the conjugate operator, respectively.

Lemma 2.3. [15] By employing the AGS-space, the components of the Riemann-Christoffel tensor of the
QSAS-manifold are presented below,

1. Râb̂cd = Ba
[cB

d
b],

2. Râb0c = Ba
bc,

3. Râ0b0 = Ba
cB

c
b ,

4. Râbcd̂ = Aad
bc −Ba

cB
d
b − 2Ba

bB
d
c ,

5. Râb0ĉ = Bac
b .

The Ricci tensor is a (2, 0)-tensor defined as Sth = −Ri
thi [8]. In the AGS-space for a QSAS-

manifold [15], the components of the Ricci tensor are expressed as follows,

Sâb = Sbâ = 2Ba
cB

c
b −Aac

bc ,

Sa0 = S0a = Bc
ac,

Sâ0 = S0â = −Bac
c , (1)

S00 = −2Ba
cB

c
a.

Otherwise, the components are zero.

On the other hand, the scalar curvature of aQSAS-manifold, using theAGS-space is calculated
based on the following formula,

K = GthSth = 2(Ba
cB

c
a −Aac

ac).

Definition 2.3. [9] An ACOM-manifold satisfying the condition,

S(W,P ) = αG(W,P ) + βη(W )η(P ) ∀ W,P ∈ X(M),

is called a quasi-Einstein manifold. In a special case where β vanishes, the manifold reduces to an Einstein
manifold. Here, α and β are smooth maps.
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Definition 2.4. [2] In an ACOM-manifold, the condition for the Φ-invariant property is given by,

Φ ◦ S = S ◦ Φ.

In the AGS-space, this condition takes the following form,
S â
b = S â

0 = 0.

Definition 2.5. [14] An ACOM-manifold is said to have a point constant Φ-holomorphic sectional cur-
vature (or a point constant ΦHS-curvature for short) if,

⟨R(W,ΦW,W,ΦW, )⟩ = h∥W∥4,

where h ∈ C∞(M) is a smooth function, and W ∈ X(M) is a vector field on M.

Theorem 2.1. A QSAS-manifold has a point constant ΦHS-curvature h iff, on the AGS-space, the con-
dition below holds,

Aad
bc = −h

2
δ̃adbc + 3B

(a
(bB

d)
c) ,

where the brackets ( ) indicate the symmetric indices and δ̃adbc is the Kronecker delta of the second type,
given by the formula δ̃adbc = δab δ

d
c + δac δ

d
b .

Definition 2.6. A QSAS-manifold is said to have a point constant ΦHQS-curvature if,

⟨Q(W,ΦW,W,ΦW )⟩ = h∥W∥4,

where h ∈ C∞(M) for all W ∈ X(M).

Definition 2.7. [22] Let (M, η, ξ,Φ,G) be an ACOM-manifold of dimension 2n + 1. A pseudo quasi-
conformal curvature tensor is a (4, 0)-tensor Q defined as,

Qijkl =(p + r)Rijkl + (q− r

2n
)(SjlGik − SilGjk) + q(SikGjl − SjkGil)

− K
2n(2n+ 1)

(p + 4nq)[GjlGik − GilGjk],

and satisfies the following properties,

Qijkl = −Qjikl = −Qijlk = Qklij ,Qijkl = Qiklj +Qiljk = 0,

where p, r and q are constants and that p2 + q2 + r2 > 0.

3 GS-Space Forms and ΦHQS-Curvature

This section discusses the pseudo-quasi conformal curvature tensor and its role in classifying
QSAS-manifolds as G1, G2, G3 and G4. It demonstrates the essential connections between QSAS

manifolds and GS-space forms required for understanding curvature behavior and identifying
Einstein or quasi-Einstein singularities.

The forthcoming theorem computes the components of the pseudo-quasi conformal curvature
tensor for a QSAS-manifold, laying the groundwork for their geometric analysis. We find the
curvature components of the tensorQ by directly applying Definition 2.7 and employing theAGS-
space.
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Theorem 3.1. Using the AGS-space, the components of the pseudo-quasi conformal curvature tensor of a
QSAS-manifold are given as follows,

1. Qâbcd̂ = (p + r)(Aad
bc − 2Ba

bB
d
c −Ba

cB
d
b ) +

(
q− r

2n

)
Sd
b δ

a
c + qSa

c δ
d
b − Kδdb δ

a
c

2n(2n+ 1)
(p + 4nq),

2. Qâb0c = (p + r)Ba
bc + qSb0δ

a
c ,

3. Qâb0ĉ = (p + r)Bac
b + qSa

0 δ
c
b ,

4. Qâ0b0 = (p + r)Ba
cB

c
b +

(
q− r

2n

)
S00δ

a
b + qSa

b g00 −
Kδab

2n(2n+ 1)
(p + 4nq),

5. Qâb̂cd = 2(p + r)Ba
[cB

b
d] +

( r

n

)
S [a
d δ

b]
c + 4qS [a

[c δ
b]
d] −

Kδabcd
2n(2n+ 1)

(p + 4nq).

The upcoming theorem refines Theorem 3.1 by defining the criteria for QSAS-manifolds to
have a point constant ΦHQS-curvature.
Theorem 3.2. A QSAS-manifold has point constant ΦHQS-curvature h iff, on the AGS-space, the fol-
lowing condition is satisfied,

Aad
bc = 3B

(a
(bB

d)
c) −

(
2q− r

2n

)
S(a
(d δ

c)
b) −

1

(p + r)

[
h

2
− (p + 4nq)K

2n(2n+ 1)

]
δ̃adbc .

Proof. Assume that M is a QSAS-manifold with point constant ΦHQS-curvature. In accordance
with Definition 2.6, we have,

⟨Q(W,ΦW,W,ΦW, )⟩ = h∥W∥4.

In the AGS-space, it follows that,
QijklW

i(ΦW )jW k(ΦW )l = hGijGklW
iW jW kW l.

By employing the properties (ΦW )a =
√
−1W a, (ΦW )â = −

√
−1W â, (ΦW )0 = 0 as well as the

properties of the pseudo-quasi conformal tensor, we deduce,
4Qâbcd̂ = 4hδab δ

d
c .

Thus, the necessary and sufficient condition for anACOM-manifold to have point-constantΦHQS-
curvature is,

Q(a d)
(bc) =

h

2
δ̃adbc . (2)

LetM be a QSAS-manifold with point constant ΦHQS-curvature tensor, we have,

Qa d
bc = (p + r)(Aad

bc − 2Ba
bB

d
c −Ba

cB
d
b ) +

(
q− r

2n

)
Sd
b δ

a
c + qSa

c δ
d
b − Kδdb δ

a
c

2n(2n+ 1)
(p + 4nq).

(3)
Symmetrizing (3) with respect to the indices (b, c) and (a, d) and then using (2), we obtain,

Aad
bc = 3B

(a
(bB

d)
c) −

(
2q− r

2n

)
S(a
(d δ

c)
b) −

1

(p + r)

[
h

2
− (p + 4nq)K

2n(2n+ 1)

]
δ̃adbc .

Conversely, we can deduce this condition directly by substituting the holomorphic sectional cur-
vature tensor into Q(a d)

(bc) .
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Theorem 3.3 establishes requirements for a QSAS-Einstein manifold by linking the propor-
tionality of the Ricci tensor to the metric tensor.
Theorem 3.3. A QSAS-manifold is an Einstein manifold iff, the following conditions hold,

α = −2Ba
cB

c
a, Bc

ac = 0, Aac
bc = 2Ba

cB
c
b + 2Ba

cB
c
a.

Proof. Assume that M is an Einstein manifold, regarding to Definition 2.3, we have,
S(W,P ) = αG(W,P ).

In local coordinates, this relation becomes Sij = αGij . Using the AGS-space, we deduce that
S00 = αG00. By applying the relations in (1), we find that α = −2Ba

cB
c
a, and from Lemma 2.1 we

obtain Bc
ac = 0.

Now, Sâb = αδab is equivalent to,
2Ba

cB
c
b −Aac

bc = αδab .

Thus,
Aac

bc = 2Ba
cB

c
b + 2Ba

cB
c
a.

The reverse implication of the theorem follows by employing the relations in (1) along with the
conditions above.
Corollary 3.1. A QSAS-manifold is an Einstein manifold iff, it has Φ-invariant Ricci tensor and the
conditions below hold,

α = −2Ba
cB

c
a, Aac

bc = 2Ba
cB

c
b + 2Ba

cB
c
a.

Proof. The desired result follows directly by applying the above theorem and Definition 2.4.

The following theorem introduces quasi-EinsteinQSAS-manifold, extendingTheorem3.3with
variable Ricci tensor proportionality.
Theorem 3.4. A QSAS-manifold is a quasi-Einstein manifold iff, it satisfies the following conditions,

α+ β = −2Ba
cB

c
a, Bc

ac = 0, Aac
bc = 2Ba

cB
c
b + (2Ba

cB
c
a + β)δab .

Proof. Assume that M is a quasi-Einstein manifold. According to Definition 2.3, we have
S00 = α + β. Using the relations in (1) we find that α + β = −2Ba

cB
c
a, and from Lemma 2.1, we

obtain Bc
ac = 0.

Furthermore, the equality Sâb = αGâb is equivalent to the equation,
Aac

bc = 2Ba
cB

c
b + (2Ba

cB
c
a + β)δab .

The reverse of the theorem also holds by employing the relations in (1) and the above conditions.

Corollary 3.2. A QSAS-manifold is an quasi-Einstein manifold iff, it has Φ-invariant Ricci tensor and
the conditions below hold,

α+ β = −2Ba
cB

c
a, Aac

bc = 2Ba
cB

c
b + (2Ba

cB
c
a + β)δab .
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Proof. This result follows directly by applying the above theorem and Definition 2.4.

The following argument relates Einstein QSAS-manifolds to point constant ΦHS-curvature,
expanding Theorem 3.3.
Theorem 3.5. If a QSAS-manifold is an Einstein manifold with point constant ΦHS-curvature h, then
h = 0.

Proof. Assume that M is an Einstein QSAS-manifold, by Theorem 3.3, we have,

Aac
bc = 2Ba

cB
c
b + 2Ba

cB
c
a, (4)

Given thatM has point constant ΦHS-curvature h, it follows that,

Aad
bc = − (n+ 1)h

2
δab + 3B

(a
(bB

d)
c) , (5)

Combining (4) and (5) and noting that n > 1, we deduce the required result.
Definition 3.1. An QSAS-manifold is classified as follows,

1. G1 if Râbcd = 0,

2. G2 if Râb̂cd = 0,

3. G3 if Râbcd̂ = 0,

4. G4 if Ra0b0 = Râ0b0 = Ra0bc = Râ0bc = Ra0b̂c = 0.

The consequent Theorems 3.6−3.9 classify QSAS-manifolds into G1, G2, G3 and G4 categories
according to curvature vanishing features and identities.
Theorem 3.6. If a QSAS-manifold is of class G4, then its Riemannian curvature tensor satisfies the first
special property,

η ◦ R(Φ2W,Φ2P )Φ2Z = η ◦ (R(ΦW,ΦP )Φ2Z +R(Φ2W,ΦP )ΦZ +R(ΦW,Φ2P )ΦZ).

Theorem 3.7. If aQSAS-manifold is of class G4, then its Riemannian curvature tensor satisfies the second
special property,

η ◦ [R(Φ2W, ξ)Φ2P + η ◦ (R(ΦW, ξ)ΦP ] = 0.

Theorem 3.8. Every QSAS-manifold is of class G1.

Theorem 3.9. Suppose M is a QSAS-manifold, then,

1. M is of class G2 iff, Ba
[cB

d
b] = 0,

2. M is of class G3 iff, Aad
bc = Ba

cB
d
b + 2Ba

bB
d
c ,

3. M is of classG4 iff, Ba
b = Bac

b = 0.

Proof. The desired results are derived from Definition 3.1 and Lemma 2.3.
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Definition 3.2. A generalized Sasakian space forms (GS-space forms) is anACOM-manifold, where there
exist functions g1, g2 and g3 on the manifoldM such that,

Rijkl =g1(GikGjl − GilGjk) + g2(ΩilΩkj + 2ΩijΩkl − ΩljΩik)

+ g3(ηjηkGil − ηjηlGik + ηiηlGjk − ηiηkGjl). (6)

The subsequent Theorems 3.10−3.13 provide GS-space forms for QSAS-manifolds and link
functions g1, g2 and g3 to their quasi-Einstein counterparts.
Theorem 3.10. [1] A GS-space forms is a quasi-Einstein manifold with α = 2ng1 + 3g2 − g3 and
β = −(3g2 + (2n− 1)g3).

Theorem 3.11. On the AGS-space, a QSAS-manifold is a GS-space forms iff,

1. Ba
cB

c
b = (g1 − g3)δ

a
b ,

2. Aad
bc = (g1 + g2)δ

a
c δ

d
b + 2g2δ

a
b δ

d
c +Ba

cB
d
b + 2Ba

bB
d
c ,

3. 2Ba
[cB

d
b] = (g1 − g2)δ

a
c δ

d
b + (g2 + g1)δ

a
dδ

b
c,

4. Ba
b = Bac

b = 0.

Proof. For i = â, j = 0, k = b and l = 0,we have,
Râ0b0 =g1(GâbG00 − Gâ0G0b) + g2(Ωâ0Ω0b + 2Ωâ0Ωb0 − Ω00Ωâb)

+ g3(η0ηbGâ0 − η0η0Gâb + ηâη0G0b − ηâηbG00),

Using Theorem 2.3 and Lemma 2.1, we deduce,
Ba

cB
c
b = (g1 − g3)δ

a
b .

The remaining requirements follow similarly.
Theorem 3.12. A GS-space forms is a manifold of class,

1. G2 iff, g1 = g2,

2. G3 iff, g1 = g2 = 0,

3. G4 iff, g1 = g3.

Proof. Using Theorem 3.11 and Definition 3.1, we conclude the required results.
Theorem 3.13. If a QSAS-manifold is a GS-space forms with point constant ΦHS-curvature h, then,

h = 0, g1 =
−3(n− 1)

8n2 − 4n− 1
, g2 =

(n− 1)

8n2 − 4n− 1
, g3 =

3n

8n2 − 4n− 1
.

Proof. From Theorems 2.1 and 3.11, we have,

(g1 + g2)δ
a
c δ

d
b + 2g2δ

a
b δ

d
c +Ba

cB
d
b + 2Ba

bB
d
c = −h

2
δ̃adbc + 3B

(a
(bB

d)
c) .

Taking the symmetry between indices (a, d) and (b, c) for the above equation, we deduce,

(g1 + g2)δ̃
ad
bc + 2g2δ̃

ad
bc = −h

2
δ̃adbc .

Consequently, since GS-space forms are quasi-Einstein manifolds, we can deduce the value of h.
Theorems 3.4 and 3.11 yield the values g1, g2, g3.

391



F. H. AlHusseini & H. M. Abood Malaysian J. Math. Sci. 19(2): 383–398(2025) 383 - 398

4 GS-Space Forms for QSAS-Manifold

The present section applies the conclusions of Section 3 to GS-space forms, defining the re-
quirements for them to be Einstein or quasi-Einstein. It enhances classifications using ξ-PQC-flat,
Φ-PQC-flat, and QPQ-flat manifolds, connecting local curvature to global geometric structures.
It builds on and explains the classifications and criteria introduced in Section 3, tying them to
explicit scalar and tonsorial computations for advanced geometric analysis.

In the AGS-space, the component of Ricci tensor for the QSAS-manifold GS-space forms are
listed below,

Sâb = Sbâ = −(g1 + g2)δ
a
b + 2ng2δ

a
b + 2Ba

cB
c
b ,

S00 = −2n(g1 − g3). (7)

Otherwise, the components are zero.

The subsequent theorem demonstrates Ricci tensor invariance under Φ for GS forms, building
on Theorems 3.3 and 3.10.
Theorem 4.1. The QSAS-manifold of GS-space forms has a Φ-invariant Ricci tensor.

The upcoming theorem specifies requirements for GS-space forms to be Einstein, expanding
Theorem 3.3.
Theorem 4.2. TheQSAS-manifold of GS-space forms is an Einstein manifold iff, the following conditions
hold,

α = −2n(g1 − g3), Ba
bB

c
c =

1

2
[(g1 + g2)δ

a
b + ng2δ

a
b − 2n(g1 − g3)] .

Proof. Using Definition 2.3, Theorem 4.1, and the relations (7), we can derive the result.

The following theorem establishes Einstein characteristics for GS-space forms, generalizing
Theorem 3.4 with secondary curvature β.
Theorem 4.3. The QSAS-manifold of GS-space forms is an quasi-Einstein manifold iff, the following
relations are hold,

α+ β = −2n(g1 − g3), Ba
bB

c
c =

1

2
[(g1 + g2)δ

a
b + ng2δ

a
b − [2n(g1 − g3)]δ

a
b ] .

Proof. Employing the relations (7), Definition 2.3, and Theorem 4.1, the desired results are ob-
tained.

The components of pseudo quasi-conformal tensor forms for GS-space forms are derived in
the following theorem, which extends Theorem 3.1 by employing g1, g2 and g3.

Theorem 4.4. In the AGS-space, the components of the pseudo quasi-conformal tensor of the QSAS-
manifold of GS-space forms are given as follows,

1. Qâbcd̂ = (p + r)[(g1 + g2)δ
a
c δ

d
b + 2g2δ

a
b δ

d
c ] +

(
q− r

2n

)
Sd
b δ

a
c + qSa

c δ
d
b − Kδdb δ

a
c

2n(2n+ 1)
(p + 4nq),
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2. Qâ0b0 = (p + r)(g1 − g3)δ
a
b +

(
q− r

2n

)
S00δ

a
b + qSa

b g00 −
Kδab

2n(2n+ 1)
(p + 4nq),

3. Qâb̂cd = 2(p + r)[(g1−g2)δ
a
c δ

d
b +(g2+g1)δ

a
dδ

b
c]+

( r

n

)
S [a
d δ

b]
c +4qS [a

[c δ
b]
d]−

Kδabcd
2n(2n+ 1)

(p+4nq).

Proof. According to the Theorems 3.1 and 3.11 and the relations (7), the required results are ob-
tained.
Definition 4.1. AQSAS-manifold of GS-space forms is called a ξ-pseudo quasi-conformally flat(ξ-PQC-
flat), if,

G(Q(W,P )ξ, Y ) = 0. (8)

The subsequent theorem demonstrates that ξ-PQC-flat of GS-space forms is quasi-Einstein,
supporting Theorem 3.13.
Theorem 4.5. A ξ-PQC-flat QSAS-manifold of GS-space forms is quasi-Einstein Manifold with,

α =
1

q

[
(2nq− 2r− p)(g1 − g3) +

Kδab
2n(2n+ 1)

(p + 4nq)

]
, β = S00 − α.

Proof. Assume that M is a ξ-PQC-flat QSAS-manifold of GS-space forms. Using (8), we have,

G(Q(W,P )ξ, Y ) = 0.

In the AGS-space, the above equality can be written as,

Qâ0b0 = Qĉ0âb = Qc0âb = 0.

Based on Qâ0b0 = 0, we conclude that,

(p + r)(g1 − g3)δ
a
b +

(
q− r

2n

)
S00δ

a
b + qSa

b g00 −
Kδab

2n(2n+ 1)
(p + 4nq) = 0.

This implies,

Sa
b =

1

q

[
(2nq− 2r− p)(g1 − g3) +

Kδab
2n(2n+ 1)

(p + 4nq)

]
δab .

Thus, M is a quasi-Einstein manifold with,

α =
1

q

[
(2nq− 2r− p)(g1 − g3) +

Kδab
2n(2n+ 1)

(p + 4nq)

]
, β = S00 − α.

The forthcoming theorem computes scalar curvature for ξ-PQC-flat GS-space forms under
Einstein conditions, building on Theorem 3.5.
Theorem 4.6. LetM be an Einstein manifold with a ξ-PQC-flatQSAS-manifold of GS-space forms, then
the scalar curvature takes the formula,

K =
2n(2n+ 1)

p + 4nq

[
−(2nq− 2r− p)− 2n

q

]
(g1 − g3).
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Proof. SinceM is an Einstein manifold, from Theorem 4.5 and β = 0, we have,

S00 = α =
1

q

[
(2nq− 2r− p)(g1 − g3) +

Kδab
2n(2n+ 1)

(p + 4nq)

]
,

Therefore,

K =
2n(2n+ 1)

p + 4nq

[
−(2nq− 2r− p)− 2n

q

]
(g1 − g3).

Definition 4.2. A QSAS-manifold of GS-space forms is said to be Φ-pseudo quasi-conformally flat(Φ-
PQC-flat), if,

Q(ΦX,ΦW,ΦP,ΦY ) = 0. (9)

The following theorem demonstrates quasi-Einstein characteristics for GS-space forms with
Φ-PQC-flat, expanding Theorem 3.12.
Theorem 4.7. A Φ-PQC-flat QSAS-manifold of GS-space forms is quasi-Einstein manifold with,

α =
1

nq

{
(p + 4nq)K
2(2n+ 1)

− (p + r)[n(g1 + g2) + 2g2]−
(
q− r

2n

)
Sb
b

}
, β = S00 − α.

Proof. Let M be a Φ-PQC-flat QSAS-manifold of GS-space forms. From (9), in the AGS-space,
and using Theorem 4.4, we have,

Qâbcd = Qâbcd̂ = Qâbĉd̂ = Qâb̂cd = 0.

From Qâbcd̂ = 0 and Theorem 3.1, we deduce,

(p + r)[(g1 + g2)δ
a
c δ

d
b + 2g2δ

a
b δ

d
c ] +

(
q− r

2n

)
Sd
b δ

a
c + qSa

c δ
d
b − Kδdb δ

a
c

2n(2n+ 1)
(p + 4nq) = 0.

Retracting the above relation via the indices (d, b), implies,

(p + r)[n(g1 + g2)δ
a
c + 2g2δ

a
c ] +

(
q− r

2n

)
Sb
bδ

a
c + nqSa

c − Kδac
2(2n+ 1)

(p + 4nq) = 0.

Hence,

Sa
c = αδac .

Therefore,M is a quasi-Einstein manifold with,

α =
1

nq

{
(p + 4nq)K
2(2n+ 1)

− (p + r)[n(g1 + g2) + 2g2]−
(
q− r

2n

)
Sb
b

}
, β = S00 − α.

Based on Theorem 3.13, the next theorem provides scalar curvature formula for Einstein GS-
space forms with Φ-PQC-flat conditions.
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Theorem 4.8. Suppose that M is an Einstein manifold with Φ-PQC-flat QSAS-manifold of GS-space
forms, then the scalar curvature is given by,

K =
2(2n+ 1)

p + 4qn

{
(p + r)[n(g1 + g2) + 2g2] +

(
q− r

2n

)
Sb
b − 2n2q(g1 − g3)

}
.

Proof. Since M is an Einstein manifold, we obtain the following by applying Theorem 4.7 and
taking β = 0,

S00 = α =
1

nq

{
(p + 4nq)K
2(2n+ 1)

− (p + r)[n(g1 + g2) + 2g2]−
(
q− r

2n

)
Sb
b

}
,

Hence,

K =
2(2n+ 1)

p + 4qn

{
(p + r)[n(g1 + g2) + 2g2] +

(
q− r

2n

)
Sb
b − 2n2q(g1 − g3)

}
.

Definition 4.3. A QSAS-manifold of GS-space forms is said to be a quasi- pseudo-quasi conformally
flat(QPQ-flat), if,

Q(X,W,P,ΦY ) = 0. (10)

In accordancewith Theorem 3.13, the following theorem identifies GS-space formswithQPQ-
flat as quasi-Einstein.
Theorem 4.9. A QPQ-flat QSAS-manifold of GS-space forms is quasi-Einstein Manifold with,

α =
1(

q(n− 2) +
r

2n

) {
(n− 1)(p + 4nq)K

2n(2n+ 1)
− 2(p + r)[(n− 1)g1 + (1− n)g2]−

(
q− r

2n

)
Sd
d

}
,

β = S00 − α.

Proof. LetM be aQPQ-flatQSAS-manifold of GS-space form. Using relation (10) and Theorem
4.4, on the AGS-space, we have,

2(p + r)[(g1 − g2)δ
a
c δ

d
b + (g2 + g1)δ

a
dδ

b
c] +

( r

n

)
S [a
d δb]c + 4qS [a

[c δ
b]
d] −

Kδabcd
2n(2n+ 1)

(p + 4nq) = 0.

Retracting the last equation by the indices (d, b), we deduce,

2(p + r)[n(g1 − g2)δ
a
c + (g2 + g1)δ

a
c ] +

(
q(n− 2) +

r

2n

)
Sa
c +

(
q− r

2n

)
Sd
d − (n− 1)Kδac

2n(2n+ 1)
(p + 4nq) = 0.

Hence,
Sa
c = αδac .

Therefore,M is quasi-Einstein with,

α =
1(

q(n− 2) +
r

2n

) {
(n− 1)(p + 4nq)K

2n(2n+ 1)
− 2(p + r)[(n− 1)g1 + (1− n)g2]−

(
q− r

2n

)
Sd
d

}
,

β = S00 − α.
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The concluding theorem computes scalar curvature for GS-space forms withQPQ-flat condi-
tions under Einstein constraints, which improves Theorem 3.13.
Theorem 4.10. Suppose that M is an Einstein manifold with QSAS-manifold of GS-space forms, then
the scalar curvature has the formula,

K =
2n(2n+ 1)

(n− 1)(p + 4nq)

{
2(p + r)[(n− 1)g1 + (1− n)g2] +

(
q− r

2n

)
Sd
d − 2

(
qn(n− 2) +

r

2

)
(g1 − g3)

}
.

Proof. Suppose that M is an Einstein manifold, using Theorem 4.9 and taking β = 0, we have,

S00 = α =
1(

q(n− 2) +
r

2n

) {
(n− 1)(p + 4nq)K

2n(2n+ 1)
− 2(p + r)[(n− 1)g1 + (1− n)g2]−

(
q− r

2n

)
Sd
d

}
,

Therefore,

K =
2n(2n+ 1)

(n− 1)(p + 4nq)

{
2(p + r)[(n− 1)g1 + (1− n)g2] +

(
q− r

2n

)
Sd
d − 2

(
qn(n− 2) +

r

2

)
(g1 − g3)

}
.

5 Conclusions

This study identified the components of the Ricci tensor and pseudo quasi-conformal curva-
ture tensor for QSAS-manifolds of GS-space forms. Different types of QSAS-manifolds were
presented and investigated, and their relationships to GS-space forms were examined. Under ξ-
pseudo quasi conformal conditions,QSAS-manifolds demonstrate quasi Einstein properties, with
specific conditions established for quasi pseudo QSAS-manifold. Finally, scalar curvatures were
calculated under these conditions, enhancing our comprehension of these geometric structures.
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